Case Study: Solid Recovered Fuels – Where to Draw the Line Between Standardisation and Legislation?

CEN Technical Committee 343 on Solid Recovered Fuels

Presented by: Christian Tebert, ÖKOPOL GmbH, DE-Hamburg http://www.oekopol.de

Expert for ECOS – European Environmental Citizens' Organisation for Standardisation

ECOS/EFTA Workshop, Brussels, 29 June 2010

ECOS

Organisation Européenne environnementale citoyenne pour la normalisation

Who is ECOS?

- ECOS: European Environmental Citizens' Organisation for Standardisation;
- Non-profit association, established in 2002
- Located in Brussels
- Funded by the EC, EFTA, MS, Foundations
- Status of an associate member of CEN
- Members: 21 environmental NGOs (e.g. Friends of the Earth, WWF, EEB), working on European and/or national level
- More information: http://www.ecostandard.org

CEN TC 343 on Solid Recovered Fuels Tebert/Ökopol on behalf of ECOS

Friends of

the Earth Europe

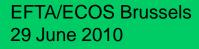
ECOS

Organisation Européenne environnementale citoyenne pour la normalisation

ECOS Strategy on Waste

- Promote prevention principle (waste hierarchy)
 => Prevention at source: waste minimisation
- Promote reduction of pollutants in waste
 => Ban heavy metals in products
 => Separate heavy metals from wastes
- Promote high level of resource management
 => Closing the loop: material recycling of waste
- Promote a safe and sustainable disposal

EFTA/ECOS Brussels 29 June 2010



Organisation Européenne environnementale citoyenne pour la normalisation

CEN TC 343 Subject:

- Made of waste classified as non-hazardous waste
- Origin: Industrial, commercial, household waste

(also including sewage sludge!)

ECOS conditions for USE OF Standardisation For Standardisation USE of Waste fuel ("Solid recovered fuels")

- Local strategy on waste prevention at source is established for companies and households
- Local system for <u>separate collection of</u> <u>hazardous</u> substances is installed
- Systems for <u>material recycling</u> have been assessed and implemented where feasible
- Use of waste as fuel (for co-incineration) is proven to have a positive energy balance and to lead to same/<u>less pollution</u> than dedicated incineration

EFTA/ECOS Brussels 29 June 2010

Organisation Européenne environnementale citoyenni pour la normalisation

CEN TC 343 Business Plan – Expected Benefits

- "Increased recovery and less final disposal of combustible wastes
- Less dependency on imported fuels (security of supply)
- Increased public trust and acceptance of SRF
- Common procedures, free trade on internal market
- Measurement of "biodegradable content" in support of Renewable Energies (RES-E) Directive
- Creation of jobs in an expanding industry"

EFTA/ECOS Brussels 29 June 2010

ECOS

Organisation Européenne environnementale citoyenne pour la normalisation

CEN TC 343 Critical issues

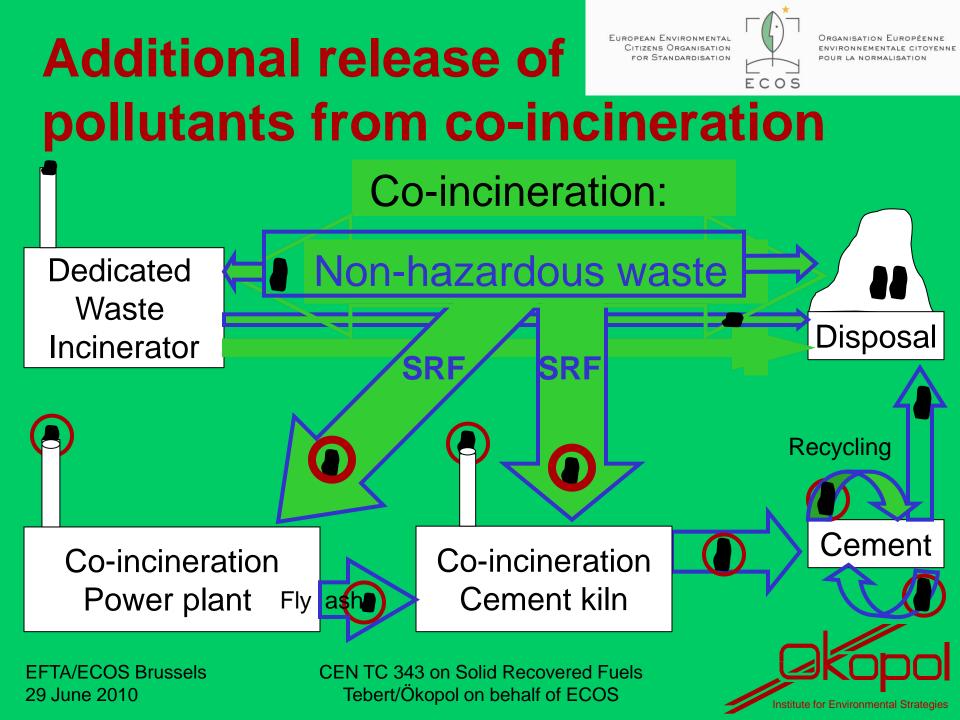
- "Increased recovery" => Competing with material recycling => waste hierarchy endangered
- "Less dependency" => New dependency: of waste
- "Increased public trust" => if better for environment
- "Common procedures" => potential, but not sure
- "Free trade"=> only if End-of-waste status obtained
- "Measurement of "biodegradable content""=> good!
- "Creation of jobs"=> sustainable jobs?

EFTA/ECOS Brussels 29 June 2010

Organisation Européenne environnementale citoyenne pour la normalisation

Fate of SRF: Waste Incineration / Co-Incineration

- Air emissions limited by Directive 2000/76/EC ► IED
- Emissions into residues and products: not limited
- SRF promote **co-incineration = less strict air limits**


Stavenhagen/DE

EFTA/ECOS Brussels 29 June 2010 CEN TC 343 on Solid Recovered Fuels Tebert/Ökopol on behalf of ECOS SRF are used in

- cement industry
- paper industry
- lignite/hard coal power stations
- dedicated waste incinerators

Organisation Européenne environnementale citoyenne pour la normalisation

Additional release of pollutants from co-incineration

Compared with dedicated incineration, air emissions increase with co-incineration, e.g. from

- Higher particulate matter emissions
 - as commonly worse dust abatement
- Higher heavy metal emissions
 - from elevated dust emissions
 - from transfer into products/re-use (fly ash, cement)
- Higher mercury and PCDD/F emissions
 - as commonly missing activated coke filters

EFTA/ECOS Brussels 29 June 2010

Organisation Européenne environnementale citoyenne pour la normalisation

CEN TC 343 WGs Basis and Analytical Methods

WG 1 Terminology Quality management

WG 2 Specifications and Classes WG 3 Determination of Biomass Content

WG 4

Physical Properties Analysis Methods

WG 3 Methods for Sampling Preparation of Sample WG 5 Chemical properties Analysis Methods

EFTA/ECOS Brussels 29 June 2010

CEN TC 343 on Solid Recovered Fuels Tebert/Ökopol on behalf of ECOS Institute for Environmental Strategies

EUROPEAN ENVIRONMENTAL CITIZENS ORGANISATION FOR STANDARDISATION

WG 2

ECOS

CEN TC 343 core standard: **Specifications and Classes**

- Good report, published on www.erfo.info
- Report shows: standardised SRF may not in all cases be appropriate for all (co-)incineration plant
- However: No cut-off criteria have been defined for other heavy metals than mercury
- Mercury "cut off" criterion in far too high and comprised in practice any non-hazardous waste
- Prevention principle was not followed

/user upload/erfo/documents/classification/Classification repor

EFTA/ECOS Brussels 29 June 2010

Outcome: Some SRF

ECOS

Organisation Européenne environnementale citoyenni pour la normalisation

hardly burn, high PCDD/F potential

- Classification: just 3 parameters (each with 5 classes)
- 1) Net calorific value: could be as low as 3 MJ/kg
- 2) Chlorine content: could be up to <u>3 %</u> (high dioxins
 3) Mercury content: formation potential)

Classification property	Statistical measure	Unit	Classes					
			1	2	3	4	5	
Net calorific value (NCV)	Mean	MJ/kg (ar)	≥ 25	≥ 20	≥ 15	≥ 10	≥ 3	
\Rightarrow High water + chlorine content = "quality fuel"?								

Classification Statistical		Unit	Classes					
property	measure	onne	1	2	3	4	5	
Chlorine (Cl)	Mean	% (d)	≤ 0,2	≤ 0,6	≤ 1,0	≤ 1,5	≤ 3	

EFTA/ECOS Brussels 29 June 2010

Standardised SRF heavy metal content can be high

3) Mercury: max. 0,5 mg/MJ (median) ,1 mg/MJ (80 percentile)

Classification	Statistical	Unit		Classes				
property	property measure	onne	1	2	3	4	5	
Mercury (Hg)	Median	mg/MJ (ar)	≤ 0,02	≤ 0,03	≤ 0,08	≤ 0,15	≤ 0,50	
	80 th percentile	mg/MJ (ar)	≤ 0,04	≤ 0,06	≤ 0,16	≤ 0,30	≤ 1,00	

⇒ Hg (median, 15 MJ/kg) up to 7,5 mg/kg = "quality fuel"?

⇒ Heavy metals others than mercury are <u>not limited</u>, e.g. cadmium (will go to air), chromium, nickel, lead, … (will be incorporated in fly ash and cement)

 \Rightarrow Pollutant content is not well restricted

⇒ Prevention principle is not applied

EFTA/ECOS Brussels 29 June 2010

uropean Environmental CITIZENS ORGANISATION OR STANDARDISATION

Mercury emissions ECOS from CEN standardised waste

Classification Statistical		Unit	Classes				
property	measure	onn	1	2	3	4	5
Mercury (Hg)	Median	mg/MJ (ar)	≤ 0,02	≤ 0,03	≤ 0,08	≤ 0,15	≤ 0,50
	80 th percentile	mg/MJ (ar)	≤ 0,04	≤ 0,06	≤ 0,16	≤ 0,30	≤ 1,00

 \Rightarrow Only if Hg class 1: low emissions from any plants

- \Rightarrow With all other classes: risk of increased Hg dissemination to ambient air
- \Rightarrow Hq classes 2 4 only to be used for co-incineration if activated coke filters are installed

 \Rightarrow Hg class 5: only for dedicated incineration

EFTA/ECOS Brussels 29 June 2010

ECOS conclusion on European Environmental Standards for waste fuels

Organisation Européenne environnementale citoyenn pour la normalisation

- ECOS acknowledges that energy use from biomass content of waste contributes to **climate protection**
- ECOS agrees that energy content of waste can be used efficiently when used in cement plants or CHP plants, compared to low energy efficiency of many dedicated waste incinerators
- but pollution level can increase with co-incineration
- <u>but</u> due to pre-treatment, **overall energy balance** can be negative and lower than for material recycling

EFTA/ECOS Brussels 29 June 2010

iropean Environmental CITIZENS ORGANISATION R STANDARDISATION

ECOS

ECOS conclusion on standards for waste fuels

- Preconditions before production of waste fuels:
 - establishment of efficient waste prevention
 - comparison of SRF use with material recycling
- Pollution prevention needs restriction of pollutants
- CEN qualifies waste as "standardised fuel" even if low net calorific value and high level of pollutants => CEN is worse than national standards (FI, DE, IT)

EFTA/ECOS Brussels 29 June 2010

ECOS conclusion on For Standards for waste fuels

 Recital 12 of Directive 2000/76/EC: "Council Directive 96/61/EC sets out an integrated approach to pollution prevention and control in which all the aspects of an installations environmental performance are considered in an integrated manner."

CEN standards on "Solid recovered fuels" do not follow to the pollution prevention principle.

The standards qualify waste as "fuel" if hardly burning, misleading the public with a positive name for disposal

EFTA/ECOS Brussels 29 June 2010 CEN TC 343 on Solid Recovered Fuels Tebert/Ökopol on behalf of ECOS

ECOS

ROPEAN ENVIRONMENTAL CITIZENS ORGANISATION STANDARDISATION

ECOS

ECOS conclusion on standards for waste fuels

- Decision on high cut-off criteria was dominated by industry interest wanting to qualify any waste classified as non-hazardous as Solid Recovered Fuel
- High cut-off criteria for mercury are against the pollution prevention principle => against the mandate*
- Decision on parameters for classification was not based on scientific knowledge. Leaving out Cadmium and Thallium does not fit to Directive 2000/76/EC emission limits => this is against the mandate*
 - * DG TREN+DG ENV Mandate M/325 of 26.8.2002

EFTA/ECOS Brussels 29 June 2010

Thank you for you attention

Ökopol GmbH www.oekopol.de

Tebert@oekopol.de Phone: +49 40 39 100 20 ECOS www.ecostandard.org

ECOS

Ralf.Lottes@ecostandard.org Phone: +32 2 894 46 55

EFTA/ECOS Brussels 29 June 2010

